Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Stefania Fusi, Donato Donati* and Fabio Ponticelli

Dipartimento di Chimica, Universitá di Siena, Via A.Moro, 53100 Siena, Italy

Correspondence e-mail: donati@unisi.it

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.051$
$w R$ factor $=0.124$
Data-to-parameter ratio $=9.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

5-Amino-8-(1-aminoethylidene)-8H-tetrazolo[1,5-a]pyridin-7-one dihydrate

The title compound, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, contains a tetrazole ring fused to a substituted pyridone ring. Bond lengths correspond to delocalized π electrons in the tetrazole moiety and a pushpull effect in the pyridone ring. An extended network of hydrogen bonds connects the molecules in planes parallel to the $b c$ plane, while the water molecules form chains parallel to the a axis.

Comment

The tetrazole ring is present in many molecules displaying different pharmacological activities. A series of tetrazoles show anticonvulsive effects, being able to interact with the benzodiazepine receptors (Rehavi et al., 1982). Further studies on structure-activity relationships have demonstrated that the tetrazole moiety may be considered a group bio-isosteric with a carboxylic acid (Jason, 2002). Many tetrazoles, synthesized on this basis, result in strong non-peptide antagonists of the angiotensin II (Kohara et al., 1995). For these reasons, some find application in pharmaceutical preparations (e.g. Irbesartan and Cilostazol).

(I)

The title compound, (I), was synthesized in high yield and crystallized with two water molecules in the asymmetric unit. The molecule is roughly planar; the aminoethyl group (C1/ $\mathrm{C} 12 / \mathrm{C} 13 / \mathrm{N} 14)$ and the tetrazole ring make angles of 0.98 (16) and $0.92(15)^{\circ}$ with the pyridinone ring plane ($\mathrm{C} 1 / \mathrm{C} 6 / \mathrm{O} 11 / \mathrm{C} 5 /$ C4/N3/C2).

No other structures of tetrazolo[1,5-a]pyridinones have been reported so far. Bond distances in the tetrazole ring differ notably from those of a reported tetrazolo[1,5-a]pyridine (Patel et al., 2002), the sequence N9-N8-N7-N3 being in the order 1.404 (4), 1.267 (4) and 1.435 (5) \AA versus 1.359 (3), 1.289 (3) and 1.357 (3) \AA; the present structure is characterized by an extensive delocalization of the tetrazole ring electrons. Bond distances and angles compare well with tetrazolopyridazine (Golič et al., 1978) and very well with tetrazolo[1,5-f]furazano[4,5-b]pyridine 1-oxide (Lowe-Ma et al., 1990). A push-pull effect is evident from the C6-O11 bond length of 1.271 (3) Å.

Compound (I) crystallizes with two water molecules in the asymmetric unit, one of which, O 1 , lies in the least-squares plane passing through all non-H atoms; it is 0.010 (5) \AA from this plane, while the other water, O 2 , is significantly out of the plane $[0.720$ (4) \AA A $]$. An extensive hydrogen-bond network assembles the molecules in layers parallel to the crystallographic bc plane, at distances of $3.387 \AA$ from each other. Besides the $\mathrm{O} 1-\mathrm{H} \cdots \mathrm{O} 2$ bridges connecting four molecules of (I), the intramolecular $\mathrm{N} 14-\mathrm{H} \cdots \mathrm{O} 11$ and intermolecular $\mathrm{N} 10-\mathrm{H} 10 \cdots \mathrm{~N} 8^{\mathrm{iii}}$ hydrogen bonds also lie in this plane (symmetry code as in Table 2). The O 2 water molecule is further engaged as a hydrogen bond donor to the O 1 water molecule at $\left(x+\frac{1}{2}, y-\frac{1}{2},-z+2\right)$, so that the water molecules form chains parallel to the a axis. The parallel stacking of the

Figure 1
View of (I) (50\% probability displacement ellipsoids).

planes creates a tubular cavity hosting the water chain. The hydrogen-bond network, reported in Table 2, is shown in Fig. 2, viewed normal to (100).

Experimental

To a solution of 4,6-diazido-3-methylisoxazolo[4,5-c]pyridine ($216 \mathrm{mg}, 1 \mathrm{mmol}$; Donati et al., 1997) in methanol (40 ml), $\mathrm{Mo}(\mathrm{CO})_{6}$ ($264 \mathrm{mg}, 1 \mathrm{mmol}$) was added and the mixture refluxed for 4 h . The solvent was evaporated and the residue column-chromatographed on silica gel with chloroform/methanol $(95 / 5 \mathrm{v} / \mathrm{v})$ as eluant, to give the title compound as a white solid (yield $98 \mathrm{mg}, 50 \%$). Slow evaporation of a chloroform solution of this compound gave crystals suitable for X-ray analysis; m.p.: partial modification around 363 K , decomposition in a brown mass at 568 K , without melting.

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=228.23$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.751$ (1) \AA 。
$b=11.990$ (1) \AA
$c=13.061(1) \AA$
$V=1057.2(2) \AA^{3}$
$Z=4$
$D_{x}=1.434 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $\mathrm{K} \alpha$ radiation
Cell parameters from 42 reflections
$\theta=4-38^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, colourless
$0.3 \times 0.2 \times 0.1 \mathrm{~mm}$

Data collection

Siemens P4 diffractometer
ω scans
3578 measured reflections
1789 independent reflections
1049 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=30.0^{\circ}$

$$
\begin{aligned}
& h=-9 \rightarrow 9 \\
& k=-16 \rightarrow 16 \\
& l=-18 \rightarrow 18 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.124$
$S=0.99$
1789 reflections
182 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0575 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.21 \mathrm{e}_{\mathrm{m}}{ }^{-3}$
$\Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0036 (12)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

C1-C12	1.415 (4)	C5-C6	1.430 (4)
C1-C2	1.421 (4)	C6-O11	1.270 (3)
C1-C6	1.461 (4)	C12-N14	1.311 (4)
C2-N9	1.345 (3)	C12-C13	1.494 (4)
C2-N3	1.363 (3)	N3-N7	1.357 (3)
C4-N10	1.342 (4)	N7-N8	1.289 (3)
C4-C5	1.353 (4)	N8-N9	1.359 (3)
C4-N3	1.393 (3)		
$\mathrm{C} 12-\mathrm{C} 1-\mathrm{C} 2$	122.4 (2)	O11-C6-C1	121.1 (2)
C12-C1-C6	121.6 (2)	C5-C6-C1	119.3 (2)
C2-C1-C6	116.0 (2)	N14-C12-C1	119.4 (3)
N9-C2-N3	106.6 (2)	N14-C12-C13	117.0 (3)
N9-C2-C1	133.4 (3)	C1-C12-C13	123.6 (2)
N3-C2-C1	120.0 (2)	N7-N3-C2	109.8 (2)
N10-C4-C5	128.1 (2)	N7-N3-C4	124.7 (2)
N10-C4-N3	115.8 (2)	C2-N3-C4	125.5 (2)
C5-C4-N3	116.1 (2)	N8-N7-N3	105.2 (2)
C4-C5-C6	123.0 (2)	N7-N8-N9	112.8 (2)
O11-C6-C5	119.6 (2)	C2-N9-N8	105.7 (2)

Figure 2
View, normal to (100), of the hydrogen-bond network.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~N} 9^{\mathrm{i}}$	$0.98(3)$	$2.04(5)$	$2.896(4)$	$146(5)$
$\mathrm{O} 2-\mathrm{H} 2^{\prime} \cdots \mathrm{O} 1^{\mathrm{ii}}$	$0.98(3)$	$1.80(4)$	$2.753(6)$	$164(5)$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 11$	$0.98(3)$	$1.73(4)$	$2.703(3)$	$169(6)$
$\mathrm{O} 1-\mathrm{H} 1^{\prime} \cdots \mathrm{O} 2$	$0.98(3)$	$1.82(3)$	$2.786(4)$	$166(5)$
$\mathrm{N} 10-\mathrm{H} 10 \cdots \mathrm{~N} \mathrm{~N}^{\text {iii }}$	$0.92(3)$	$2.09(4)$	$2.998(3)$	$174(4)$
$\mathrm{N} 10-\mathrm{H} 10^{\prime} \cdots \mathrm{O} 1^{\text {iv }}$	$0.86(3)$	$2.19(3)$	$2.886(4)$	$139(3)$
$\mathrm{N} 14-\mathrm{H} 14 \cdots \mathrm{O} 2^{\mathrm{v}}$	$0.91(4)$	$1.96(4)$	$2.845(4)$	$162(3)$
$\mathrm{N} 14-\mathrm{H} 14^{\prime} \cdots \mathrm{O} 11$	$0.92(4)$	$1.78(4)$	$2.560(4)$	$141(4)$

Symmetry codes: (i) $x, y-1, z$; (ii) $\frac{1}{2}+x, \frac{1}{2}-y, 2-z$; (iii) $2-x, y-\frac{1}{2}, \frac{5}{2}-z$; (iv)
$2-x, \frac{1}{2}+y, \frac{5}{2}-z$; (v) $2-x, \frac{1}{2}+y, \frac{3}{2}-z$.
Friedel pairs were merged before the refinement. A riding model was used for the methyl group H atoms, with $U_{\text {iso }}(\mathrm{H})$ freely refined. Equal-distance restraints and a refined common $U_{\text {iso }}$ value were used for the H atoms of the water molecules. All other H atoms were located in Fourier maps and freely refined $[\mathrm{C}-\mathrm{H}=0.94$ (3) \AA and $\mathrm{N}-\mathrm{H}=0.86$ (3)-0.92 (4) \AA].

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine
structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 1998).

The availability of the X-ray Diffractometer of the 'Centro di analisi e determinazioni strutturali' is gratefully acknowledged.

References

Donati, D., Fusi, S. \& Ponticelli, F. (1997). J. Chem. Res. (S), pp. 170-171. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Golič, L., Leban, I., Stanovnik, B. \& Tisler, M. (1978). Acta Cryst. B34, 1136. Jason, H. R. (2002). Bioorg. Med. Chem. 10, 3379-3393.
Kohara, Y., Imamiya, E., Kubo, K., Wada, T., Inada, Y. \& Naka, T. (1995). Bioorg. Med. Chem. Lett. 5, 1903-1908.
Lowe-Ma, C. K., Nissan, R. A. \& Wilson, W. S. (1990). J. Org. Chem. 55, 37553766.

Patel, U. H., Dave, C. G., Jotani, M. M. \& Shah, H. C. (2002). Acta Cryst. E58, o431-o432.
Rehavi, M., Skolnik, P. \& Pauli, S. M. (1982). Eur. J. Pharmacol. 78, 353-356.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1994). XSCANS Users Manual. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1998). PLATON. Utrecht University, The Netherlands.

